Last year we wrote a blog post about some of our team’s favourite MAPublisher features. Not surprisingly for software that has been around for over 20 years, everyone had a different favourite and we had to be selective for the blog post. This year, with new team members coming on board and new MAPublisher releases it’s a good time for a new list of favourites. Check out some of these features that you might not know about, and find out how they can make your workflow easier!
Create Elevation Plot
Jeff C. – Quality Assurance
Prior to MAPublisher 10.3, “Create Elevation Plot” was a feature of Path Utilities I seldom used because, to be honest, it had a few limitations. MAPublisher 10.3 introduced a completely new way of creating elevation profiles, and the difference is astounding. The available customization options are endless – not only can you select whether your axes will use metric or imperial units, but you can also set the Line Colour, Line Width, Fill Colour, Background Colour, Axis Intervals, Axis Labels, Graph Size and much more. Another aspect of this updated tool that I love is the ability to save and re-use ‘styles’. These styles remember specific elements of an elevation profile (e.g. appearance, units, size, etc.) and can be applied to other profiles made in the future, saving the user a lot of time.
Text Utilities
Keith S.- Quality Assurance
In my opinion, the Text Utilities tool is one that is underutilized in MAPublisher. The tool allows you to perform actions on text within a document, including Curve Text to Latitude, Draw Shape Around Text, Merge Text, Create Line From Text on a Path, and many more. The actions can be performed on selected text only, text on specific layers, or all text in the document. The tool even allows the user to preview most actions before committing the changes.
If you have ever seen text along a path with a red plus symbol at the end of it after performing a transformation or manual adjustment it is an indication that the text path is not long enough to contain all of the text. No problem for my favourite action in the Text Utilities tool—Extend Overflowing Text. This utility solves the issue by extending the text path to a length which will accommodate the full length of the text.
Join Lines
Oliver N. – Customer Support
One of my favourite tools to use in MAPublisher is the Join Lines tool. If you are working with a road or rail network and sections of the same track or street connect to each other but are broken into different line features, you can easily join them into single features with a common attribute like Street Name or Track Number. You can target a line layer and then in the Destination options, choose either to perform the join on the original target layer or specify a name for a new line layer that will contain the joined lines. You can also use a proximity value to determine how close the lines must be in order to be joined. I find that this tool allows subsequent styling to be done easily and saves a lot of time in arranging the data to your needs. It also reduces the size of your file by compiling data into fewer features.
Copy MAP Objects From
Keith S. – Quality Assurance
This feature allows users to copy MAP objects (including MAP Views, MAP Layers, MAP Themes, MAP Selections, and MAP Locations) from one open document to another. MAP Views can be copied by themselves or with their associated MAP Layers. The best part is, that any artwork which is copied to the destination document will retain its styling provided that the custom colour swatches used in copied artwork are set as “Global” in the Adobe Swatch Options dialog. It works like this: With the destination document open, launch the Copy MAP Object From tool. Select the object(s) you want to copy to the destination document by checking the checkbox beside each object, then click “OK” to perform the copy. Copy MAP Objects From is one of my favourite features because it saves so much time when styling maps!
MAP Themes Scaling Charts
Bob P. – Business Development Associate
My favourite way of making infographic maps is using our MAP Chart themes. Within Chart Themes, you can add a bar or pie chart to any point layer, based on any set of attributes from the point layer. For an added level of information, each of the charts can be scaled based on the value from another attribute. This helps when you want to show the proportion of values, but also give an indication of the total population size for each point too. The best part is MAPublisher allows you to pick between Area and Radial scaling for pie charts. If the population of one point is twice the size of the smallest point, it can either have twice the area, or twice the radius length. This is my favourite tool in MAPublisher, because it shows that our team thinks of everything to make sure cartographers can make the exact map they want, right down to the smallest details.
About the Authors
Jeff, Keith, Bob and Oliver are all members of the Avenza Systems Team and their passion for maps shows through in the work that they do with our clients and in developing MAPublisher.
Happy Valentine’s Day! What better way to celebrate than with new maps (and creating infographics) about love? This year we’ve hunted for romantic data for Canada and the United States and visualized it all for you using MAPublisher 10.3 and Adobe Illustrator.
The first map shows all the most romantic locations (at least as their names suggest) in Canada. This information was provided by Stats Canada. Using the MAPublisher Point Plotter, it was easy to plot all of the locations!
The best part about using the Point Plotter is you can choose any symbol available in your symbol library to mark the points. I chose the symbol that I wanted (a Valentine’s map marker–how adorable!) and then plotted each location simply by using the town’s name and province.
After adding some text and symbols in keeping with the theme, the map was ready to go! You can check out the PDF below, or, you can download the georeferenced version from the Avenza Map Store, for use in the Avenza Maps app.
Moving on to my infographic – which is a popular and engaging way to illustrate statistics and small amounts of data that might otherwise be overlooked. I found data from the United States covering a variety of Valentine’s Day topics. The plan is for my infographic to include two maps and two additional charts. The first map illustrates the average wedding cost by state, and the second map shows popular proposal locations.
For the average wedding cost per state map, I used a MAP Theme to colour all the states appropriately (and quickly!). The benefit of using a MAP Theme is that you can apply a theme to multiple layers at once. Since Hawaii and Alaska were projected separately from the mainland of the United States, they exist in different layers on the artboard. Using a MAP Theme made it easy to include them in the colour scheme of the map.
On the second map, I want to map the most popular proposal locations in the country. I used the MAP Point Plotter tool again, but, this time, I used the latitude and longitude to plot the points because some of the locations could not be plotted by name alone. It’s very beneficial to be able to swap between the two options!
My maps are complete, and after adding two graphs (made using the graphing tools in Illustrator) containing even more fun Valentine’s day data, and some love-ly symbols, the entire infographic was finished. You can check out the completed infographic below!
About the Author
Rebecca Bennett is a member of the Marketing Team at Avenza Systems and loves making creative and visually appealing maps.
Georeferencing is the process of adding spatial information to a physical map or raster image. Geographic Imager includes a georeferencing tool and also includes two methods of validating georeferencing so that your imagery is not only beautiful but also spatially aware (that’s two of the four keys to great maps!).
Use the Georeference feature in Geographic Imager to reference an image by establishing ground control points, choosing a transformation method, and specifying a coordinate system. It can also be used to rectify—transform or warp—an image to match the image coordinate system specified. The Validate and Show Image Extents Online tools are used to test georeferencing accuracy.
The Validate tool provides a visual comparison of the accuracy of your image to the real world. Use the Validate tool by clicking a point on the image to see the corresponding location on a web map.
The image below shows the Validate tool in action. Select the tool and click on a road intersection to open the web map with the same intersection identified. If the two don’t match, consider georeferencing again. It is good practice to test several known points on the image to ensure overall accuracy. Choose features that will be easy to identify on the web map such as road intersections, coastlines, buildings, and landmarks.
The Show Image Extents Online tool displays a rectangle representing the spatial extent of the image on the web map. Use this tool to verify that the full area covered by the image is accurate. Note that the rectangle shown on the web map will include the non-map areas of the image including the borders, legend, etc.
It’s that simple! Using Geographic Imager, you can manipulate imagery in Adobe Photoshop while now ensuring spatial integrity!
The Orthographic projection is a commonly used projection by cartographers because it closely resembles the world as we know it exists – a three-dimensional sphere (sorry “Flat Earthers”). However, when MAPublisher displays the world in the Orthographic projection, it will still draw any points, lines or polygons that fall beyond the perspective’s horizon. This can create a “hollow Earth” or see-through effect that would cause confusion to the map reader.
Further confusion may arise depending on the order of the artwork within the layers, as some features that should be on the far side of the Earth may appear on top of features on the near side of the Earth. In order to prevent these inaccuracies, we need to remove the data beyond the horizon before transforming the data to the Orthographic projection. The following workflow is one example of how to overcome this limitation. It can be easily adapted for any orthographic projection with a custom latitude of origin and/or central meridian.
Step 1: Plot Your Centre Point
Import your world dataset and ensure the MAP View is in WGS84 (or you can use the world.mif file from the MAPublisher Tutorial Data folder).
Next, decide where you want the final orthographic map to be focused on. In this example, our focal point is 70°N, 100°E. Create a point layer, and plot your centre point using the MAP Point Plotter tool.
Step 2: Project to Azimuthal Equidistant Projection
Reproject the map to Azimuthal Equidistant (with a sphere-based datum). To do so, go to the MAP Views panel > Edit Map View. Enable Perform Coordinate System Transformation and click the No Coordinate System Specified hyperlink.
Under the Projected>World category, find Lambert Azimuthal Equidistant (Sphere), meter and click the Copy Object button to begin editing a copy of the existing Lambert Azimuthal Equidistant (Sphere), meter coordinate system.
Side Note – Why start with the Azimuthal Equidistant projection?
The straight-line distance between the central point on the map to any other point is the same as the straight-line distance between the two points along the earth’s surface.
Furthermore, you must use the ‘Sphere’ version of the Lambert Azimuthal Equidistant projection, because the radius is equal in all directions. The other version of the projection uses an ellipsoid datum which would require more complex formulas to solve the buffer distance in Step 3.
Next On the Definition tab, set the Central Meridian to 100, and the Latitude of Origin to 70. You may rename the custom projection on the Identification tab if you wish to reuse it later. Click OK and apply the projection.
Step 3: Create the Horizon Line
Create the horizon line from your custom centre point. Next, add a buffer of 10,002.5 km (see note below) around your focal point.
Curious about where the buffer value comes from?
Given that we know:
Earth’s radius using Authalic Sphere is 6,371,007m
The formula for the circumference of a sphere = 2πr
The distance from the focal point to the horizon in the Azimuthal Equidistant projection = 1/4 of Earth’s circumference = C × 1/4
We can first determine the circumference by:
= 2πr
= 2 × π × 6,371,007
= 40,010,000 m
Now that we know Earth’s circumference, we can determine the distance to the horizon by:
= C × 1/4
= 40,010,000 × 1/4
= 10,002,500 m or 10,002.5 km
Step 4: Convert Your Custom Horizon Line
Convert the resulting circle with four Bezier curve points to polylines using MAPublisher’s path utilities tool Convert Beziers to polylines. This is your horizon line.
Step 5: Back to WGS84 and Editing the Horizon line
Import another copy of your world file. If necessary, transform it to WGS84 and drag your horizon line into this MAP View. You can also hide or remove the Lambert Azimuthal Equidistant MAP View.
Use Illustrator’s Direct Selection Tool to select and delete the horizontal portion of the horizon polygon.
Next, use Illustrator’s Scissors Tool to cut the polyline at the artboard edge
Move the section of the curve remaining outside the artboard inside and to the opposite edge.
Resize the artboard to match the extents of the WGS84 MAP View. Use Illustrator’s Pen Tool rejoin the two lines into one. Continue using the Pen Tool to close the polygon by following along the edge of the artboard (result should look similar to the image below). Export the polygon area in case you need to add additional data at a later date.
Step 6: Crop Beyond the Horizon
Use the Crop to Shape tool to remove the features outside of the polygon.
Step 7: Reproject the Remaining Data
After cropping, go to the MAP View and Perform Coordinate System Transformation. Choose the Orthographic, meter projection, click Copy Object to begin editing the coordinate system and put in the custom central meridian and latitude of origin you chose back at the beginning of the workflow. Once the custom Orthographic coordinate system is created, complete the MAP View transformation.
Step 8: Remove Lingering Polar Points
If there are any lingering polar points, you can delete them from the horizon line manually using the Direct Selection Tool.
You’ve successfully projected your data into a custom orthographic projection without any overlapping features from the other side of the Earth.
The best part is, all of the map features retain their attributes, so you are free to continue applying MAP Themes, generating labels, and any of the other design tools at your disposal to make your map project a work of art.
About the Author
Jeff Cable is the Quality Assurance Lead for Avenza’s desktop applications. While he primarily focuses on MAPublisher, Jeff’s formal education is in remote sensing. He hopes to utilize this knowledge in the near future to help develop Geographic Imager into a more powerful geospatial image processing suite.
Maybe you already know that MAPublisher has the ability to let you import shared data layers from your ArcGIS Online organizational account and to connect to publicly available map servers from various online sources. Once GIS data is imported, you can use Adobe Illustrator’s powerful design tools to style and edit your map into a thing of beauty. The ability to import from ArcGIS has been available for a while, however, it’s still a question that people ask our Support Team frequently. So, here’s a reprise of a blog post, from a while ago, that illustrates how to import layers directly from ArcGIS Online or an ArcGIS web service into Adobe Illustrator, using MAPublisher.
Esri’s ArcGIS Online is a collaborative web geographic information system (GIS) that allows you to store and share GIS data using Esri’s secure cloud. Use MAPublisher to import Feature, Map Image, and Tile layers into Illustrator without losing any georeferencing, features, or attributes. MAPublisher does not currently support the use of Map Image or Tile services that use Dynamic layers.
Importing from ArcGIS Online
To load a layer, use the MAPublisher Import tool as you would with any data type and select ArcGIS Online from the Format drop-down menu. Click the login link to enter your ArcGIS Online credentials to access your organization’s web portal.
Feature Layers contain vector data that will import as artwork into Adobe Illustrator. You can reduce the time it takes to import by filtering the data first, isolating only the layers that you need.
Map Image Layers and Tile Layers are raster data layers that can be added by selecting the geographic extents.
Importing from a Web Service
In addition to using your organization’s data, you can get publicly available data by connecting to an ArcGIS Web Service. To connect to a web service, use MAPublisher Import and select ArcGIS Web Service from the Format drop-down menu. Click to select the dataset and enter the URL for the service. This is a great option when searching for data from open data portals created by government agencies.
Import from ArcGIS Web Service
MAPublisher bridges the gap that exists between Esri’s Online services and the full-featured design environment of Adobe Illustrator. You can leverage Illustrator’s tools on GIS data shared within your organization, or from a publicly available source to make better, more beautiful maps.
In the latest release of MAPublisher, version 10.3, we added some great new features including the ability to create elevation profiles. The new Elevation Profile tool allows you to create an elevation plot using elevation information from anchors (vertices) of a line as long as there is a single path in a MAP View, with a coordinate system. You can also use the Elevation Profile tool to easily make changes to an existing MAPublisher elevation profile.
Example 1 – Trail Elevation
For the first example – take a satellite image of Tunnel Mountain in Banff, Alberta. I gave the image a coordinate system and georeferenced it in Geographic Imager then imported into MAPublisher as a GeoTIFF. Using the pen tool, I replicated the trail system for Tunnel Mountain while adding anchor points (vertices) throughout the line feature. These anchor points are the source of the elevation information in the resulting profile. Alternatively, you can import the trail data from another source and add your own additional anchor points using the Add Anchor tool. The screenshot below shows the anchor points indicating each line vertex.
These anchor points correspond with the points on the elevation profile below. Once finished, select the line feature to access the Elevation Profiles tool.
Editing Profile Options
The Edit Elevation Profile window lets you customize your profile manually with advanced customization tools or using a simplified built-in MAPublisher style. The advanced tools allow you to alter the size of the profile, intervals, axes, colour scheme, units of measurement and plenty more to ensure that you can make your profile unique and convey the desired information. For example, select “Edit series appearance” as shown in the screenshot, to choose whether you want your series to be a smooth line, or to display your individual anchor points. Additionally, select “Edit axis appearance” to customize the colour of your grid or change the appearance of your labels. Customize the look of your profile with the built-in stylized templates.
I chose the “Temperate” style, for the example profile below, to stay true to the land cover as you can see above.
Now, in addition to making great trail maps in MAPublisher, the Elevation Profile tool allows you to create a valuable extra feature which could be exceptionally beneficial for hikers!
Try experimenting with the additional built-in styles that reflect the appearance of other land types available as well, such as Sierra, Arid, Boreal, and Fluvial which is featured in our next example.
Example 2 – Fluvial Depth Profile
The nautical map below takes aerial imagery from the National Agriculture Imagery Program (NAIP). Depth data is extracted from the line feature that extends from the marina into the Strait of Georgia in Washington, USA.
The fluvial depth profile shows the increase in depth the deeper into the Strait.
If you import track data into MAPublisher and add your own anchor points, you can see the elevation or depth reached on your excursion by creating an elevation profile from your track.
Depending on where you drop your anchor points, you can convey everything from coastal change by creating elevation profiles for a temporal series of aerial photos of the same area, to elevation or depth change of a hiking trail on a mountain in one of Canada’s most popular destinations or a sailing trip off the west coast.
Summing Up
With the release of MAPublisher 10.3, you can now make beautiful maps that also communicate elevation information with ease. The new Elevation Profiles tool will help make your maps that much better!
About the Author
Andrea Becker is a member of the Support team at Avenza Systems. She helps clients take their cartography to new heights with MAPublisher design tools.
We’re excited to announce the release of MAPublisher 10.3 for Adobe Illustrator. We’ve listened to your feedback and worked closely with our users to build features to improve map design and productivity. Stay tuned for more blog posts and other resources that go deeper into some of the new features. For now, here’s an overview:
MAPublisher 10.3
This update contains new features and performance improvements as well as fixes for reported issues. Some highlights are summarized below, for the full release notes see below.
Compatible with Adobe Illustrator CC 2019. We’re committed to providing the best GIS and cartography tools for building great quality maps in Adobe Illustrator. Improvements to our user interface to support high-resolution monitors, and this release is fully compatible with the latest Adobe Illustrator CC 2019 on both Windows (32-bit and 64-bit) and Mac.
Create Elevation Profile charts. An often-requested feature from our users, elevation data for points along a selected path can now be collected and displayed as an elevation profile in a highly customizable chart. The data is downloaded in real-time from a server (internet connection is required), which can then be customized to your liking using the available settings. Frequently used settings can even be saved for future use.
View data distribution when batch generating rules in MAP Themes and MAP LabelPro. When selecting a data classification in MAP Themes or MAP LabelPro, you now have the ability to see how it affects the data distribution in an interactive histogram and chart. Histograms are a great way to visualize continuous data in intervals and useful for large sets of data points.
Improved attribute capabilities in ‘Join’ tools. We have added many attribute management improvements to MAPublisher Join tools (Join Areas, Join Points, and Join Lines). You can now better manage how attributes are handled during a Join process, including the ability to calculate new attributes. We also added additional operations to help you better sort and calculate statistics from attributes.
MAPublisher 10.3 Release Notes
Compatible with Adobe Illustrator CC 2019
Create Elevation Profile charts
View data distribution when batch generating rules in MAP Themes and MAP LabelPro
In a previous blog post, we defined a few common cartography terms that you might be likely to encounter while using MAPublisher and Geographic Imager; however, that was just the tip of the iceberg when it comes to cartography and GIS jargon. Here, in no particular order, are several additional terms used by cartographers, GIS professionals and people who work with spatial imagery.
Topology
Topology is a key principle in GIS for data management and integrity, ensuring the data quality of spatial relationships is maintained. In general, a topological data model defines how spatial objects (point, line, and area features) are represented, and defines and enforces data integrity rules (for example, there should be no gaps between polygons).
Azimuth
The horizontal angle, measured in degrees, between a baseline drawn from a center point and another line drawn from the same point. Normally, the baseline points true north and the angle is measured clockwise from the baseline.
Neatline
All 2-dimensionally rendered maps have to compromise somewhat on accuracy, even if only just a little by moving or scaling features to improve readability. However, the neatline is never adjusted, making it the most accurate element on a map.
The neatline is the border defining the extent of geographic data on a map and separating the body of the map from the map margin. It demarcates map units such as meridians and parallels, and depending on the map projection and the units selected, the neatline may not have 90-degree corners.
Geodatabase
A Geodatabase, a database or file structure used primarily to store, query, and manipulate spatial data,stores geometry, a spatial reference system, attributes, and behavioral rules for data. An advantage of geodatabases over shapefiles is that various types of geographic datasets can be collected within a geodatabase, including feature classes, attribute tables, raster datasets, network datasets, topologies, and many others.
Geoprocessing
Geoprocessing is an operation used to manipulate a GIS data resulting in a new set of data. Common geoprocessing operations include geographic feature overlay, feature selection and analysis, topology processing, raster processing, and data conversion. Geoprocessing allows for the definition, management, and analysis of information used to make decisions based on patterns within the GIS data.
Shapefile
An Esri Shapefile is a vector data storage format for storing the location, shape, and attributes of geographic features. A shapefile is stored as a set of related files and contains one feature class. An alternative to using shapefiles to store GIS data is a geodatabase, however, shapefiles have some advantages in terms of relative simplicity and wide-ranging compatibility with many applications. Related files contain additional information that is read by the shapefile when opening/importing in GIS applications, as long as these related files have the same name and reside in the same directory – the *.dbf (database) file contains attribute information, and the *.prj (projection) file contains coordinate system information. Shapefiles also have limitations such as the inability to support raster files, and large file sizes.
Buffer
A zone around a map feature measured in units of distance or time is called a buffer. Buffers are useful for proximity analysis.
Geodesy
Geodesy is the science concerned with the measurement and mathematical description of the size and shape of the earth and its gravitational fields. Geodesy includes the large-scale, extended surveys for determining positions and elevations of points, in which the size and shape of the earth must be taken into account to achieve accuracy.
Vector vs Raster
The terms vector and raster are encountered often in cartography though they are not often defined. In a nutshell,
Raster data is made up of pixels (sometimes referred to as grid cells). Each pixel can have a range of values used to represent data points. For example, in a satellite image, every pixel has a red, green and blue value.
Vector data is not made up of a grid of pixels. Instead, vector graphics are comprised of vertices and paths where the vertices are x,y coordinates. In GIS systems, they are a latitude and longitude with a spatial reference frame.
Mosaic
A Mosaic is a single raster dataset composed of two or more merged raster datasets—for example, one image can be created by assembling multiple aerial photographs whose edges usually have been torn or cut selectively and matched to the imagery on adjoining images to form a continuous representation of a portion of the Earth’s surface.
Orthorectification
The process of correcting the geometry of an image so that it appears as though each pixel were acquired from directly overhead. Orthorectification is used to correct terrain distortion in aerial or satellite imagery.
It’s no secret that we believe digital is the future of maps because of the many advantages that digital maps and mobile map readers offer. But we also recognize that there is still and always will be demand for paper maps. They go together like peanut butter and jelly, pizza and beer or fish and chips. In today’s digital marketplace, the trick will be for map publishers find ways to serve up these tasty combinations to map consumers in a commercially viable way.
While this seems trivial, in fact, there are challenges for publishers to efficiently provide maps in both paper and digital formats. For most established map publishers, the paper distribution channel is well characterized. With the right relationships, publishers can get their maps onto the market through websites, brick-and-mortar retail stores, at events and through other business partnerships. On the other hand, selling digital maps requires an e-commerce platform capable of handling digital products and an application on which to view and use the maps effectively.
To address the challenge, we have partnered with print on demand and publisher MapSherpa.
While our vision is to have all of your maps on your phone or tablet, theirs is to have maps in your pocket, or on your wall. Together we can make both of those scenarios a reality.
Our joint pilot project will allow map consumers to easily get maps in both digital and printed formats. Now, when view selected maps in the Avenza Map Store you’ll have the option to also purchase a paper copy in a variety of sizes, and printed on a variety of different materials from MapSherpa’s map store, MapTrove. Find one of the selected maps on the MapSherpa site, in paper format, and choose to purchase the digital version for use on your mobile device from the Avenza Map Store.
We see this as a model for the future of map publishing and distribution, and a winning solution for publishers and consumers alike.
What does one do when a passion for historical people and events takes you to places you’ve never been only to find that there are no accurate maps to get you there? If you’re Billy Roberts you channel your expertise in spatial analysis, cartography, and passion for the Wild West into a nearly year-long research project that culminates in writing a book and launching your own map publishing company.
By day, Roberts is a is a member of the Geospatial Data Science team within the Systems Modeling & Geospatial Data Science Group at the National Renewable Energy Laboratory (NREL). In his spare time, he is an avid fan of Billy the Kid and other notable personas of the Wild West.
‘After a lot of reading about Billy the Kid, I decided that I wanted to visit some of the places that I had just read about.’ says Roberts. ‘But I quickly found that there were really no good maps out there. Tourist maps are not hard to find but they tend to be less than accurate, incomplete, and feature covered wagons and stuff that isn’t really relevant to the story that the map is telling.’ he adds.
So, I went to New Mexico, talked to local historians and spent nine months researching locations that are part of the narrative of Billy the Kid and the Lincoln County War. Some of the locations I visited are on private ranches and sometimes the land-owners didn’t even know about them. I used historical maps as a reference and was able to verify that the places, buildings, or artifacts were there. Then I georeferenced everything and mapped it all out using MAPublisher.
Roberts has been using the MAPublisher plug-in for Adobe Illustrator for more than 8 years. ‘The combination of MAPublisher and Illustrator lets you do things you can’t do with other mapping software, and once you get past the initial learning curve, it’s easy to use.
Making maps of the Wild West presents some design challenges that Roberts is able to overcome with MAPublisher. ‘I work almost exclusively in MAPublisher. I use Geographic Imager to combine hillshades with digital old paper textures to get the background effects I want, then use MAPublisher for all the mapping and digitizing.’ For his Billy the Kid map, Roberts imported data sets stored as shapefiles into MAPublisher and used Illustrator to add fonts that were typically used on maps in the 1700s and 1800s to give them maps a realistic, authentic look. ‘I could not make maps the way I do with ArcGIS.’ says Roberts. ‘I can do so much more with the design in MAPublisher, and it lets me work quickly and efficiently. If at any time I have a problem or questions, I can contact Avenza and someone always gets back to me. I know that they have fixed bugs and implemented solutions based on my suggestions.’ he adds. ‘It feels like Avenza is on my team.’
Roberts has now published three maps based on the Lincoln County War which are distributed mainly through Roberts’ website. His Billy the Kid wall map, which in addition to being aesthetically pleasing, is also educational. The map has become extremely popular at festivals and in the museums of the historic town of Lincoln, New Mexico, even earning a spot in the visitor’s center. Up next for Roberts are more maps and a detailed book about Billy the Kid. ‘I want to tell his story from a geographic perspective because for me, seeing how things fit together spatially helps to make the story much more real.’
See more of Billy Roberts’ maps on his website www.newmapsoftheoldwest.com and coming soon to the Avenza Maps Store.